Which of the following systems of equations is
equivalent to the 2nd order equation
X" -3x"+2x=0"?
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A system of equations X' =PX + F is

homogeneous if =g [O] =0 -0

: =
le,X

Taking derivatives is a linear operator
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The principle of superposition of solutions:
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ﬁheorem 1 The solutions to a homogeneous
system form a vector space.

Theorem 3 The space has dimension n if P
and F are continuous.



The Wronskian of vector valued functions
X_1,...,X_n is

o N

Theorem 2

(@ If X_1,...,X_n are dependent then W = 0.
(b) If they are also solutions of a homogeneous

linear system and they are independent, then W
is never 0.
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The connection with the Wronskian of scalar-
valued functions f_1, ... ,f n.
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Page 384 question 14.

Verify that the given vectors are solutions of the
differential equation. Use the Wronskian to
show that they are independent.
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Page 384 question 23.
Find a particular solution of the system in
question 14 that satisfies x_1(0) =0, x_2(0) =5
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Question.
What is the Wronskian of the functions
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e. None of the above.
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In the first order linear system X" =PX + F if the
functions P and F are continuous then, given

numbers a, b_1, ... ,b_n, there is a unique Uv\(o]/w& (N@eo— commbairincurnar
solution satisfying
x_1@) =b_1,x 2(@)=b_2, ..., x_n@) =b_n. CJX \Q‘L ST ><c1<a> =5 .
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